
1

MPEG-4 Authoring Tool using Moving Object

Segmentation and Tracking in Video Shots

Petros Daras, Ioannis Kompatsiaris, Ilias Grinias, Georgios Akrivas, Georgios

Tziritas, Stefanos Kolias, and Michael G. Strintzis*

CORRESPONDING AUTHOR:

Prof. Michael G. Strintzis,

Informatics and Telematics Institute,

1st Km. Thermi-Panorama Road,

57001 Thermi-Thessaloniki, Greece

Tel. :+30310.996351, Fax : +30310.996342,

Email: strintzi@eng.auth.gr

Abstract

In this paper an authoring tool for the MPEG-4 multimedia standard integrated with image sequence analysis
algorithms is described. Bringing much new functionality, MPEG-4 o�ers numerous capabilities and is expected to
be the future standard for multimedia applications. However, the implementation of these capabilities requires a
complex authoring process, employing many di�erent competencies from image sequence analysis and encoding of
Audio/visual/BIFS to the implementation of di�erent delivery scenarios: local access on CD/DVD-ROM, Internet or
broadcast. As multimedia system history teaches, however powerful the technologies underlying multimedia computing,
the success of these systems depends on their ease of authoring. In this paper a novel authoring tool fully exploiting the
object-based coding and 3D synthetic functionalities of the MPEG-4 standard is described. It is based upon an open
and modular architecture able to progress with MPEG-4 versions and it is easily adaptable to newly emerging better
and higher-level authoring and image sequence analysis features. The authoring tool is available for download from our
web site:

http://uranus.ee.auth.gr/pened99/Demos/ Authoring Tool/authoring tool.html
Keywords: MPEG-4, Authoring Tools, Image sequence analysis

I. Introduction

MPEG-4 is the next generation compression standard following MPEG-1 and MPEG-2. Whereas the

former two MPEG standards dealt with coding of general audio and video streams, MPEG-4 speci�es

a standard mechanism for coding of audio-visual objects. MPEG-4 builds on the proven success of

three �elds [1], [2], [3]: digital television, interactive graphics applications (synthetic content) and

interactive multimedia (World Wide Web, distribution of and access to content). Apart from natural

objects, MPEG-4 also allows coding of two-dimensional and three-dimensional, synthetic and hybrid,

This work was supported by the PENED99 project of the Greek Secretariat of Research and Technology and from the P2People
EC IST project. P. Daras, I. Kompatsiaris and M. G. Strintzis are with the Informatics and Telematics Institute, Thessaloniki,
Greece. I. Grinias and G. Tziritas are with the Computer Science Dept, University of Crete, Greece. G. Akrivas and S. Kolias
are with the National Technical University of Greece, Athens, Greece.

2

audio and visual objects. Coding of objects enables content-based interactivity and scalability [4]. It

also improves coding and reusability of content (Figure 1).

Far from the past \simplicity" of MPEG-2 one-video-plus-2-audio-streams, MPEG-4 allows the

content creator to compose scenes combining, spatially and temporally, large numbers of objects of

many di�erent types: rectangular video, arbitrarily shaped video, still image, speech synthesis, voice,

music, text, 2D graphics, 3D, and more. However, the implementation of these capabilities requires a

complex authoring process, employing many di�erent competencies from image sequence analysis and

encoding of Audio/visual/BIFS to the implementation of di�erent delivery scenarios: local access on

CD/DVD-ROM, Internet or broadcast. As multimedia system history teaches, however powerful the

technologies underlying multimedia computing, the success of these systems ultimately depends on

their ease of authoring.

In [5] the most well-known MPEG-4 authoring tool (MPEG-Pro) was presented. This includes a

graphical user interface, BIFS update and a timeline but it can only handle 2D scenes and it is not

integrated with any image sequence analysis algorithms. In [6] an MPEG-4 compliant authoring tool

was presented, which, however, is capable only for the composition of 2D scenes. In other articles

[7], [8], [9], [10], MPEG-4 related algorithms are presented for the segmentation and generation of

Video Objects which, however, do not provide a complete MPEG-4 authoring suite. Commercial

multimedia authoring tools such as IBM Hotmedia and Veon [11], [12] are based on their proprietary

formats rather than widely acceptable standards. Other commercial solutions based on MPEG-4 like

application suites with authoring, server and client capabilities from iVAST and Envivio, are still

under development [13], [14]. In [15], [16], an authoring tool with 3D functionalities was presented but

it didn't include any support for image sequence analysis procedures.

Although the MPEG-4 standard and powerful MPEG-4 compliant authoring tools will provide the

needed functionalities in order to compose, manipulate and transmit the \object-based" information,

the production of these objects is out of the scope of the standards and is left to the content developer.

Thus, the success of any object-based authoring, coding and presentation approach depends largely on

the segmentation of the scene based on its image contents. Usually, segmentation of image sequences

is a two step process; �rst scene detection is performed, followed by moving object segmentation and

tracking.

Scene detection can be considered as the �rst stage of a non-sequential (hierarchical) video repre-

3

sentation [17]. This is due to the fact that a scene corresponds to a continuous action captured by

a single camera. Therefore, application of a scene detection algorithm will partition the video into

\meaningful" video segments. Scene detection is useful for coding purposes, since di�erent coding ap-

proaches can be used according to the shot content. For this reason, scene detection algorithms have

attracted a great research interest recently, especially in the framework of the MPEG-4 and MPEG-7

standards and several algorithms have been reported in the literature dealing with the detection of cut,

fading or dissolve changes either in the compressed or uncompressed domain. A shot is the part of the

video that is captured by the camera between a record and a stop operation [18], or by video editing

operations. The boundaries between shots are called shot changes, and the action of extracting the

shot changes is called shot detection. A shot change can be abrupt or gradual. Examples of gradual

changes are mixing, fade in and fade out. During mixing, both shots are shown for a short time (a few

seconds). For fade in and fade out, the �rst and the second shots, respectively, are the blank shot.

After shot detection, motion segmentation is a key step in image sequence analysis and its results

are extensively used for determining motion features of scene objects, as well as for coding purposes

to reduce storage requirements [19]. In the past, various approaches have been proposed for motion

or spatio-temporal segmentation. A recent survey of these techniques can be found in [20]. In these

approaches, a 2-D motion or optical ow �eld is taken as input and a segmentation map is produced,

where each region undergoes a movement described by a small number of parameters. There are

top-down techniques which rely on the outlier rejection starting from the dominant motion, usually

that of the background. Other techniques are bottom-up starting from an initial segmentation and

merging regions until the �nal partition emerges [21] [22]. Direct methods are reported too [23] [24]

[25]. All these techniques could be considered automatic, since only some tuning parameters are �xed

by the user. Grinias and Tziritas [26] proposed a semi-automatic segmentation technique which is

suitable for video object extraction for post-production purposes and object-scalable coding such as

that introduced in the MPEG-4 standard.

In this paper an authoring tool for the MPEG-4 multimedia standard integrated with image sequence

analysis algorithms is described. The tool handles the authoring process from the end-user interface

speci�cation phase to the cross-platform MP4 �le. It fully exploits the object-based coding and 3D

synthetic functionalities of the MPEG-4 standard. More speci�cally, the user can insert basic 3D

objects (e.g. boxes, spheres, cones, cylinders) and text and modify their attributes. Generic 3D

4

BIFS
enc .

Enc.

Enc.

S
ync &

m
ultiplexors

Comp.
Info dem

ultiplexer

BIFS
dec .

Dec.

Dec.

com
positor

...

AV objects coded

...

AV objects coded
AV objects coded

Audio Stream

Complex
Visual

Content

Audio

Enc.

Video Streams

Dec.

Fig. 1. Overview of MPEG-4 Systems.

models can be created or inserted and modi�ed using the IndexedFaceSet node. Furthermore, the

behavior of the objects can be controlled by various sensors (time, touch, cylinder, sphere, plane) and

interpolators (color, position, orientation). Arbitrarily shaped static images and video can be texture

mapped on the 3D objects. These objects are generated by using image sequence analysis integrated

with the developed authoring tool. For the shot detection phase, the algorithm presented in [18] is

used. It is based on a method for the extraction of the dc coeÆcients from MPEG-1 encoded video.

After the shots have been detected in an image sequence, they are segmented and the extracted objects

are tracked through time using a moving object segmentation and tracking algorithm. The algorithm is

based on the motion segmentation technique proposed in [26]. The scheme incorporates an active user

who delineates approximately the initial locations in a selected frame and speci�es the depth ordering of

the objects to be tracked. The segmentation tasks rely on a Seeded Region Growing (SRG) algorithm,

initially proposed in [27] and modi�ed to suit our purposes. First, colour-based static segmentation

is obtained for a selected frame through the application of a region growing algorithm. Then, the

extracted partition map is sequentially tracked from frame to frame using motion compensation and

location prediction, as described in [26].

The user can modify the temporal behavior of the scene by adding, deleting and/or replacing nodes

over time using the Update commands. Synthetic faces can also be added using the Face node and

their associated Facial Animation Parameters (FAP) �les. It is shown that our choice of an open and

modular architecture of the MPEG-4 Authoring System endows it with the ability to easily integrate

5

new modules.

MPEG-4 provides a large and rich set of tools for the coding of audio-visual objects [28]. In order

to allow e�ective implementations of the standard, subsets of the MPEG-4 Systems, Visual, and

Audio tool sets have been identi�ed, that can be used for speci�c applications. These subsets, called

\Pro�les", limit the tool set a decoder has to implement. For each of these Pro�les, one or more

Levels have been set, restricting the computational complexity. Pro�les exist for various types of

media content (audio, visual and graphics) and for scene descriptions. The authoring tool presented

here is compliant with the following types of pro�les: The Simple Facial Animation Visual Pro�le, The

Scalable Texture Visual Pro�le, The Hybrid Visual Pro�le, The Natural Audio Pro�le, The Complete

Graphics Pro�le, The Complete Scene Graph Pro�le, and the The Object Descriptor Pro�le which

includes the Object Descriptor (OD) tool.

The paper is organized as follows. In Sections II and III the image sequence analysis algorithms used

in the authoring process are presented. In Section IV MPEG-4 BIFS are presented and the classes of

nodes in a MPEG-4 scene are de�ned. In Section V an overview of the authoring tool architecture

and the graphical user interface is given. In Section VI, experiments demonstrate 3D scenes composed

with the authoring tool. Finally, conclusions are drawn in Section VII.

II. Shot detection

The shot detection algorithm, used in the authoring process is an adaptation of the method presented

originally by Yeo and Liu [18]. The basic tenet is that the dc coeÆcients of the blocks from a MPEG-1

encoded video contain enough information for the purpose of shot detection. In addition, as shown in

[18] the use of this spatially reduced image (\dc image") due to its smoothing e�ect, can reduce the

e�ects of motion and increase the overall eÆciency of the method. Computing the dc coeÆcient for P-

and B- frames would be computationally complex, because it requires motion compensation. The dc

coeÆcient is therefore approximated as a weighted average of the dc coeÆcients of the four neighboring

blocks of the previous frame, according to the motion vector. The weights of the averaging operation

are proportional to the surface of overlap between the current block and the respective block of the

previous frame. By using this approximation and comparing each two subsequent images, using an

appropriate metric as described in the sequel, a sequence of di�erences between subsequent frames is

produced. Abrupt scene changes manifest themselves as sharp peaks at the sequence of di�erences.

The algorithm must detect these peaks among the signal noise.

6

0

100

200

300

400

500

600

700

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127

Fig. 2. Absolute di�erence of consecutive dc images.

In the proposed procedure, the video is not available in MPEG format, therefore the aforementioned

method is applied to YUV raw video after a low { pass �ltering, which e�ectively reduces each frame

to a dc image.

Two metrics were proposed for comparing frames, that of the absolute di�erence, and that of the

di�erence of the respective histograms. The �rst method, which was chosen by the authors of this

paper for its computational eÆciency, uses directly the absolute di�erence of the dc images [29]:

diff(X; Y) =
1

M �N

X

i;j

jxi;j � yi;jj ; (1)

where M;N are the dimensions of the frame and xi;j, yi;j represent two subsequent frames. As Yeo

and Liu [18] note, this is not eÆcient in the case of full frames, because of the sensitivity of this metric

to motion, but the smoothing e�ect of the dc coeÆcient estimation can compensate that, to a large

extent. The second metric compares the histograms of the dc images. This method is insensitive to

motion, [18] and most often, the number of bins b used to form the histograms is in the range 4-6.

Once the di�erence sequence is computed (Fig. 2), a set of two rules is applied to detect the peaks.

First, the peak must have the maximum value in an interval with a width of m frames, centered at the

peak. Secondly, the peak must be n times greater than the second largest value of the second interval.

This rule enforces the sharpness of the peak.

When just the two aforementioned rules were used, the system seemed to erroneously detect low-

7

valued peaks, which originated from errors related to P- and B- frames. These short peaks can be seen

in Fig. 2. Therefore, we introduced a third rule, that of an absolute threshold, which excludes these

short peaks. The threshold equals d�M � N , where M;N are the dimensions of the frame and d is

a real parameter. In the case of histograms, the threshold is also proportional to 2b.

In our experiments, good results, in terms of shot recall and precision, were obtained with m = 3�5,

n = 1:5 � 2:0 and d � 0:0015. A more thorough discussion on the topic of the choice of parameters

can be found in [29].

Another issue is the relative importance of chrominance in peak detection. In particular, the formula

d = (1� c)dL + cdC was applied. c = 0:4� 0:7 gives good results, but acceptable results (about 30%

inferior) are obtained with other values of this parameter as well.

III. Moving object segmentation and tracking

A. Overall structure of video segmentation algorithms

After shot detection, a common requirement in image sequence analysis is the extraction of a small

number of moving objects from the background. The presence of a human operator, called here the

user of the authoring tool, can greatly facilitate the segmentation work, for obtaining a semantically

interpretable result. The proposed algorithm incorporates an active user for segmenting the �rst frame,

and for subsequently dealing with occlusions during the moving object tracking.

For each object, including the background, the user draws a closed contour entirely contained within

the corresponding object. Then, a region growing algorithm, expands the initial objects to their

actual boundaries. Unlike [26], where the segmentation of the �rst frame is mainly based on the

motion information, the region growing is based on the color of the objects and is done in a way that

overcomes their color inhomogeneity. Having obtained the segmentation of the �rst frame, the tracking

of any moving object is done automatically, as it is described in [26]. Only the layered representation

of the scene is needed by the user in order to correctly handle overlaps. We assume that each moving

region undergoes a simple translational planar motion, represented by a two-dimensional velocity

vector, and we re-estimate an update for this vector from frame to frame using a region matching

(RM) technique, which is an extension of block matching to regions of any shape and provides the

required computational robustness. This motion estimation is performed after shrinking the objects,

in order to ensure that object contours lie within the objects. The \shrunken" objects are projected

8

onto their predicted position in the next frame using motion compensation and the region growing

algorithm is applied from that position.

In the following subsection the Seeded Region Growing algorithm is presented. In Subsection III-C

the initial segmentation is described, as well as the modi�cations applied to SRG, in order to cope with

the color inhomogeneity of objects. Subsection III-D presents in summary, how the SRG algorithm is

used for the temporal tracking of the initial segmentation.

B. The seeded region growing algorithm

Segmentation is carried out by a seeded region growing algorithm which was initially proposed

for static image segmentation using a homogeneity measure on the intensity function [27]. It is a

sequential labelling technique, in which each step of the algorithm labels exactly one pixel, that with

the lowest dissimilarity. Letting n be the number of objects (classes), an initial set of connected

components A0
1; A

0
2; : : : ; A

0
n is required. At each step m of the algorithm, let Bm�1 be the set of all yet

unlabelled points which have at least one immediate neighbor already labelled, i.e., belonging to one

of the partially completed connected components fAm�1
1 ; Am�1

2 ; : : : ; Am�1
n g. In this work, 8-connection

neighborhoods are considered. For each pixel p 2 Bm�1, let us denote by i(p) 2 f1; 2; : : : ; ng the index

of the set Am�1
i that p adjoins and by Æ(p; Am�1

i(p)) the dissimilarity measure between p and Am�1
i(p) , which

depends on the segmentation features used. If the characterization of the sets is not updated during

the sequential labelling process, the dissimilarity will be Æ(p; A0
i(p)). If p adjoins two or more of the

sets Am�1
i , we de�ne i(p) to be the index of the set that minimizes the criterion Æ(p; Am�1

j) over all

neighboring sets Am�1
j . In addition, we can distinguish a set F of boundary pixels and add p to F when

p borders more than one set. In our implementation, boundary pixels p are agged as belonging to F

and at the same time, they are associated with the set that minimizes the dissimilarity criterion over

all sets on whose boundary they lie. The set of boundary points F is useful for boundary operations,

as we shall see in Section III-D. Then we choose among the points in Bm�1 one satisfying the relation

z = argmin
p 2 Bm�1

fÆ(p; Am�1
i(p))g (2)

and append z to Am�1
i(z) , resulting in Am

i(z). This completes one step of the algorithm and �nally, when

the border set becomes empty after a number of steps equal to the number of initially unlabelled

pixels, a segmentation map (R1; R2; : : : ; Rn) is obtained with Am
i � Ri (for all i;m) and Ri \ Rj = ;

(i 6= j), where [n
i=1Ri =
 is the whole image.

9

(a) (b) (c)

Fig. 3. User provided input of initial sets (b) and automatically extracted representative points (c) for erik's frame
0(a).

For the implementation of the SRG algorithm, a list that keeps its members (pixels) ordered accord-

ing to the criterion value Æ(�; �) is used, traditionally referred to as Sequentially Sorted List (SSL).

C. Object initialization and static segmentation

The initial regions required by the region growing algorithm must be provided by the user. A tool

has been built for drawing a rectangle or a polygon inside any object. Then points which are included

within these boundaries de�ne the initial sets of object points. This concept is illustrated in Figure 3

(b), where the input of initial sets for the frame 0 of the sequence erik is shown. The user provides an

approximate pattern for each object in the image that is to be extracted and tracked.

The color segmentation of the �rst frame is carried out by a variation of SRG. Since, the initial

sets may be characterized by color inhomogeneity, on the boundary of all sets we place representative

points, for which we compute the locally average color vector in the Lab system. In Figure 3 (c),

the small square areas correspond to the regions of points that participate to the computation of the

average color vector, for each such representative point. The dissimilarity of the candidate for labelling

and region growing point z of Eq. (2) from the labelled regions that adjoins is determined using this

feature and the Euclidean distance, which may be possibly combined with the meter of the color

gradient of z. After the labelling of z the corresponding feature is updated. Therefore, we search for

sequential spatial segmentation based on color homogeneity, knowing that the objects may be globally

inhomogeneous, but presenting local color similarities, suÆcient for their discrimination.

When the static color segmentation is completed, every pixel p is assigned a label i(p) 2 f1; 2; : : : ; ng,

while boundary information is maintained in set F . Thus, the set map i is the �rst segmentation map

i0, which is going to be tracked using the method that has been presented in [26] in detail and is

10

described shortly in the following subsection.

D. Tracking

We now briey describe how the result of the initial segmentation (set map i0) is tracked over a

number of consecutive frames. We assume the result has been tracked up to frame k�1 (set map ik�1)

and we now wish to obtain the set map ik corresponding to frame k (partition of frame k). The initial

sets for the segmentation of frame k are provided by the set map ik�1. The description of the tracking

algorithm follows, while the motivations of the algorithm have already been presented in Section III-A.

For the purpose of tracking, a layered representation of the sets, rather than the planar one implied

by SRG, is introduced in order to be able to cope with real world sequences which contain multiple

motions, occlusions or a moving background. Thus, we assume that sets are ordered according to their

distance from the camera:

8i; j 2 f1; 2; : : : ; ng; Ri moves behind Rj if and only if, i < j (3)

In this way, set R1 refers to the background, set R2 moves in front of set R1 and behind the other sets,

etc. The user is asked to provide this set ordering in the stage of objects initialization.

Having this set ordering available, for each set R 2 fR2; R3; : : : ; Rng of set map ik�1, the following

operations are applied in order of proximity, beginning with the most distant:

� The border of R is dilated for obtaining the set of seeds A of R, which are required as input by SRG.

� The velocity vector of R is re-estimated assuming that remains almost constant over time. The

estimation is done using RM (with sub-pixel accuracy) on the points of A.

� The \shrunken" subset A of region R is translated from image k � 1 to image k according to the

estimated displacement.

The last step, before applying the motion-based SRG, is the estimation of the background's velocity

vector. Then, SRG is applied to points that remain unlabelled after the above operations, as it is

described in [26].

Furthermore, two boundary regularization operations are proposed in [26] to stabilize object bound-

aries over time. The �rst one smooths the boundary of the objects, while the second computes an

average shape using the information of a number of previously extracted segmentation maps.

11

E. System description

The proposed algorithm was designed for semi-automatic segmentation requiring an initial user

input (the user must draw a rough boundary of the desired object), therefore it is suited for an

authoring tool where user interaction is expected. The spatio-temporal algorithm is a separate module

developed in Java integrated with the authoring tool, which was developed in C++ for Windows

(Borland Builder C++ 5) and OpenGL interfaced with the \core" module and the tools of the IM1

(MPEG-4 implementation group) software platform. The IM1 3D player is a software implementation

of a MPEG-4 Systems player [30]. The player is built on top of the Core framework, which includes

also tools to encode and multiplex test scenes. It aims to be compliant with the Complete 3D pro�le

[1]. This shows the exibility of the architecture of the presented authoring tool to eÆciently combine

di�erent modules and integrate the results in the same MPEG-4 compatible scene. As can be seen for

the experimental results, the SRG algorithm was shown to be very eÆcient. In case the tracking fails,

the user can select a more appropriate boundary for the desired object else the tracking process may

be restarted from the frame where the tracking failed.

IV. BIFS scene description features

The image sequence analysis algorithms described above are going to be integrated with a MPEG-4

Authoring Tool providing a mapping of BIFS nodes and syntax to user friendly windows and controls.

The BIFS description language [31] has been designed as an extension of the VRML 2.0 [32] �le

format for describing interactive 3D objects and worlds. VRML is designed to be used on the Internet,

intranets, and local client systems. VRML is also intended to be a universal interchange format for

integrated 3D graphics and multimedia. The BIFS version 2 is a superset of VRML and can be used

as an e�ective tool for compressing VRML scenes. BIFS is a compact binary format representing

a pre-de�ned set of scene objects and behaviors along with their spatio-temporal relationships. In

particular, BIFS contains the following four types of information:

� The attributes of media objects, which de�ne their audio-visual properties.

� The structure of the scene graph which contains these objects.

� The pre-de�ned spatio-temporal changes of these objects, independent of user input.

� The spatio-temporal changes triggered by user interaction.

12

Fig. 4. Example of an MPEG-4 scene.

Scene

 Newscaster

Voice Segmented
 Video

2D Background Natural
Audio/Video

 Channel logo

 Logo 3D Text

 Desk 2D Text

Fig. 5. Corresponding scene tree.

The scene description follows a hierarchical structure that can be represented as a tree (Figures 4, 5).

Each node of the tree is an audiovisual object. Complex objects are constructed by using appropriate

scene description nodes. The tree structure is not necessarily static. The relationships can evolve in

time and nodes may be deleted, added or be modi�ed. Individual scene description nodes expose a

set of parameters through which several aspects of their behavior can be controlled. Examples include

the pitch of a sound, the color of a synthetic visual object, or the speed at which a video sequence is to

be played. There is a clear distinction between the audiovisual object itself, the attributes that enable

13

the control of its position and behavior, and any elementary streams that contain coded information

representing attributes of the object.

The proposed MPEG-4 authoring tool implements the BIFS nodes graph structure allowing authors

to take full advantage of MPEG-4 nodes functionalities in a friendly graphical user interface.

A. Scene structure

Every MPEG-4 scene is constructed as a direct acyclic graph of nodes. The following types of nodes

may be de�ned:

� Grouping nodes construct the scene structure.

� Children nodes are o�springs of grouping nodes representing the multimedia objects in the scene.

� Bindable children nodes are the speci�c type of children nodes for which only one instance of the

node type can be active at a time in the scene (a typical example of this is the Viewpoint for a 3D

scene; a 3D scene may contain multiple viewpoints or \ cameras", but only one can be active at a

time).

� Interpolator nodes constitute another subtype of children nodes which represent interpolation data

to perform key frame animation. These nodes generate a sequence of values as a function of time or

other input parameters.

� Sensor nodes sense the user and environment changes for authoring interactive scenes.

B. Nodes and �elds

BIFS and VRML scenes are both composed of collections of nodes arranged in hierarchical trees.

Each node represents, groups or transforms an object in the scene and consists of a list of �elds that

de�ne the particular behavior of the node. For example, a Sphere node has a radius �eld that speci�es

the size of the sphere. MPEG-4 has roughly 100 nodes with 20 basic �eld types representing the basic

�eld data types: boolean, integer, oating point, two- and three-dimensional vectors, time, normal

vectors, rotations, colors, URLs, strings, images, and other more arcane data types such as scripts.

C. ROUTEs and dynamical behavior

The event model of BIFS uses the VRML concept of ROUTEs to propagate events between scene

elements. ROUTEs are connections that assign the value of one �eld to another �eld. As is the case

with nodes, ROUTEs can be assigned a \name" in order to be able to identify speci�c ROUTEs for

14

Fig. 6. The interpolators panel.

modi�cation or deletion. ROUTEs combined with interpolators can cause animation in a scene. For

example, the value of an interpolator is ROUTEd to the rotation �eld in a Transform node, causing

the nodes in the Transform node's children �eld to be rotated as the values in the corresponding �eld

in the interpolator node change with time. This event model has been implemented in a graphical

way, allowing users to add interactivity and animation to the scene (Figure 6).

D. Streaming scene description updates: BIFS-Command

The mechanism with which BIFS information is provided to the receiver over time comprises the

BIFS-Command protocol (also known as BIFS-Update), and the elementary stream that carries it, thus

called BIFS-Command stream. The BIFS-Command protocol conveys commands for the replacement

of a scene, addition or deletion of nodes, modi�cation of �elds, etc. For example, a \ReplaceScene"

command becomes the entry (or random access) point for a BIFS stream, in exactly the same way

15

as an Intra frame serves as a random access point for video. A BIFS-Command stream can be read

from the Web as any other scene, potentially containing only one \ReplaceScene" command, but it

can also be broadcast as a \push" stream, or even exchanged in a communications or collaborative

application. BIFS commands come in four main functionalities: scene replacement, node/�eld/route

insertion, node/value/route deletion, and node/�eld/value/ route replacement. The BIFS-Command

protocol has been implemented so as to allow the user to temporarily modify the scene using the

authoring tool graphical user interface.

E. Facial Animation

The Facial and Body Animation nodes can be used to render an animated face. The shape, texture

and expressions of the face are controlled by the Facial De�nition Parameters (FDPs) and/or the

Facial Animation Parameters (FAPs). Upon construction, the face object contains a generic face

with a neutral expression. This face can be rendered. It can also immediately receive the animation

parameters from the bitstream, which will produce animation of the face: expressions, speech etc.

Meanwhile, de�nition parameters can be sent to change the appearance of the face from something

generic to a particular face with its own shape and (optionally) texture. If so desired, a complete

face model can be downloaded via the FDP set. The described application implements the Face node,

using the generic MPEG-4 3D face model, allowing the user to insert a synthetic 3D animated face.

V. MPEG-4 Authoring Tool

A. System Architecture

The process of creating MPEG-4 content can be characterized as a development cycle with four

stages: Open, Format, Play and Save (Figure 7). In this somewhat simpli�ed model, the content

creators can:

� edit/format their own scenes inserting synthetic 3D objects, such as spheres, cones, cylinders, text,

boxes and background (Figure 8). Also, they may group objects, modify the attributes (3D position,

color, texture, etc) of the edited objects or delete objects from the content created. The user can

perform the image sequence analysis procedures described in Sections II and III in order to create

arbitrarily shaped video objects and insert them into the scene. Also, insert sound and natural video

streams, add interactivity to the scene, using sensors and interpolators and control dynamically the

scene using an implementation of the BIFS-Command protocol. Generic 3D models can be created

16

User

Interaction

 GUI

Open
Internal Structure

3D Renderer

 (OpenGl)

Save
Custom Format

Save (.mp4)

MPEG−4
Browser

File

MPEG−4
Encoder

Format

Play

Fig. 7. System Architecture.

or inserted and modi�ed using the IndexedFaceSet node. The user can insert a synthetic animated

face using the implemented Face node. During these procedures the attributes of the objects and

the commands as de�ned in the MPEG-4 standard and more speci�cally in BIFS, are stored in an

internal program structure, which is continuously updated depending on the actions of the user. At

the same time, the creator can see in real-time a 3D preview of the scene, on an integrated window

using OpenGL tools (Figure 9). Further, the creator can:

� present the created content by interpreting the commands issued by the edition phase and allowing

the possibility of checking whether the current description is correct.

� open an existing �le.

� save the �le either in custom format or after encoding/multiplexing and packaging in a MP4 �le [28],

which is expected to be the standard MPEG-4 �le format. The MP4 �le format is designed to contain

the media information of an MPEG-4 presentation in a exible, extensible format which facilitates

interchange, management, editing and presentation of the media.

17

�

Group
Objects

Box Text

Background

IndexedFaceSet

Face

Cone

Cylinder

Sphere

Delete Object
Details

texture
control Update

Commands

Fig. 8. Authoring tool application toolbar.

B. User Interface

To improve the authoring process, powerful graphical tools must be provided to the author [33]. The

temporal dependence and variability of multimedia applications, hinders the author from obtaining

a real perception of what he is editing. The creation of an environment with multiple, synchronized

views and the use of OpenGL was implemented to overcome this diÆculty. The interface is composed

of three main views, as shown in Figure 9.

Edit/Preview: By integrating the presentation and editing phases in the same view the author is

enabled to see a partial result of the created object on an OpenGL window. If any given object

is inserted in the scene, it can be immediately seen on the presentation window (OpenGL window)

located exactly in the given 3D position. The integration of the two views is very useful for the initial

scene composition.

Scene Tree: This attribute provides a structural view of the scene as a tree (a BIFS scene is a graph,

but for ease of presentation, the graph is reduced to a tree for display). Since the edit view cannot be

used to display the behavior of the objects, the scene tree is used to provide more detailed information

concerning them. The drag-n-drop and copy-paste modes, can also be used in this view.

Object Details: This window, shown in Figure 10, o�ers object properties that the author can

use to assign values other than those given by default to the synthetic 3D objects. The user can

18

Fig. 9. Main Window, indicating the di�erent components of the user interface.

perform the image sequence analysis procedures described in Sections II and III in order to create

arbitrarily shaped video objects and insert them into the scene. This arbitrarily shaped video can

be used as texture on every object. Other supported properties are: 3D position, 3D rotation, 3D

scale, color (di�use, specular, emission), shine, texture, video stream, audio stream (the audio and

video streams are transmitted as two separated elementary streams according to the object descriptor

mechanism), cylinder and cone radius and height, textstyle (plain, bold, italic, bolditalic) and fonts

(serif, sans, typewriter), sky and ground background, texture for background, interpolators (color,

position, orientation) and sensors (sphere, cylinder, plane, touch, time) for adding interactivity and

animation to the scene. Furthermore, the author can insert, create and manipulate generic 3D models

using the IndexedFaceSet node. Simple VRML �les can also be inserted in a straightforward manner.

Synthetically animated 3D faces can be inserted by the Face node. The author must provide a FAP

�le [34] and the corresponding Encoder Parameter File (EPF), which is designed to give the FAP

encoder all information related to the corresponding FAP �le, like I and P frames, masks, frame rate,

quantization scaling factor and so on. Then, a bifa �le (binary format for animation) is automatically

created, so as to be used in the Scene Description and Object Descriptor �les.

19

Fig. 10. Object details Window, indicating the properties of the objects.

VI. EXPERIMENTAL RESULTS

In this section two examples are presented, describing the steps that lead to the creation of two

MPEG-4 scenes.

The �rst example demonstrates the use of the BIFS-Commands (Update), which is used to give to

the user a real perception about what he/she is editing in a temporal editing environment. In this

scene, a textured box is �rst created and after a period of time is replaced by a textured sphere. The

exact steps are the following: On the main window, a Box with a video texture is created (Figure 11

(a)). On the Updates tab (Figure 11 (b)) the Replace command is selected (\Replace" button). On

the Update Command Details panel (Figure 12 (a)) in tab \UpdateData" a sphere with another video

texture is selected. On the same panel, in tab \General", (Figure 12 (b)) the box is speci�ed (\Set

Target" button) and the time (\Time of Action" button), of action needed (e.g. 500 ms). Finally, by

pressing the button \Play" the result is shown by the 3D MPEG-4 Player (Figures 13 (a), (b)).

The second example leads to the creation of an MPEG-4 scene containing arbitrarily shaped video

20

(a) (b)

Fig. 11. Using Update Commands in the Authoring Tool

objects using the shot detection and object segmentation procedures. The scene represents a virtual

studio (Figure 21). The scene contains several groups of synthetic objects including boxes with textures,

and text objects (Figure 20). The \logo" group which is located on the upper left corner of the studio is

composed of a rotating box and a text object that describes the name of the channel. The background

contains four boxes (left-right side, oor and back side) with image textures. The desk is created

using two boxes. On the upper right corner of the scene a box with natural video texture is presented.

On this video-box relative videos are loaded according to the news. The newscaster (image sequence

\Akiyo") is an arbitrarily shaped video object produced using the algorithms described in Sections II

and III.

In order to test the shot detection algorithm, a test sequence was created composed of the two image

sequences \Akiyo" and \Eric". Using the user interface of the authoring tool (Fig. 14) the user can

select a video for processing. The supporting formats are YUV color and grayscale at 176� 144 pixels

(QCIF) and 352 � 288 pixels (CIF). As soon as the user selectes the video, the algorithm presented

in Section II is performed. The result is the temporal segmentation of the image sequence into shots.

After the shot detection procedure, the semi-automatic moving object segmentation procedure begins

(Section III). The user draws a rough boundary around the moving foreground object (Fig. 15) of each

shot and the algorithm automatically performs the region growing and tracking procedures (Fig. 16).

The result is a set of segmentation masks for each shot of the image sequence (Fig. 14). The user can

easily select the objects from each shot that are to be included in the scene. Every selected mask (for

21

(a) (b)

Fig. 12. Specifying the appropriate properties

every shot) is given as input to the MPEG-4 Video Reference Software [35] which is used for encoding

and decoding video sequences. After a transcoding procedure, the �nal result is an H.263 video which

is compliant with the current MPEG-4 IM1 player implementation. This video can be used as texture

on every object as shown in Figures 17, 18. The block diagram of the complete procedure is presented

in Fig. 19.

The same scene can be easily modi�ed so as to contain a synthetic newscaster (Figure 23). The body

of the newscaster is an IndexedFaceSet imported from a VRML 3D model. The 3D face was inserted

by using the corresponding button. After the selection of a FAP (Face Animation Parameters) �le

and an audio stream (a saxophone appears on the upper left corner), the face animation is con�gured

according to the selected FAP �le. The video stream (H.263) and the audio stream (G.723) are

transmitted as two separate elementary streams according to the object descriptor mechanism. All

animation (except the face animation) is implemented using interpolator nodes. Some major parts of

the produced scene description �le (.txt) are the following:

DEF ID_014 AnimationStream #fap animation stream
{

url 50
}

Transform {

22

(a) (b)

Fig. 13. The result of the Update Commands as shown in the Authoring Tool.

translation 0.000 1.529 1.690
rotation 0.000 0.000 0.000 0.000
scale 0.013 0.013 0.013

Children Face #face node
{

fap DEF ID_104 FAP{}
renderedFace []

}
}

. . .
DEF T120661744 Transform {

translation 0.000 0.000 0.000
rotation 1.786 1.014 0.000 0.911
children Shape {

appearance Appearance {
texture ImageTexture {

url 10
}

textureTransform TextureTransform {
}

}
geometry Box { #box with image texture

size 0.796 0.796 0.694
}

}
}

DEF OrientTS120658180 TimeSensor {
stopTime -1
startTime 0
loop TRUE # time sensor for interpolation

purposes
cycleInterval 15

}
DEF ORI120658180 OrientationInterpolator {

key [0, 1]

23

Select Video
 button Clear Video

 button

Path of the
 selected video

Shot's 1st frame
Mask's 1st frame

Available video formats

Tree View with the shots and the
 corresponding masks

Available color formats
Creation of arbitrarily
 shaped video

Fig. 14. The segmentation form in the Authoring Tool.

keyValue [0.000 0.000 0.000 0.000 ,0.000 0.200 0.000 3.143]
}
. . .
ROUTE OrientTS120658180 .fraction_changed TO ORI120658180.set_fraction
ROUTE ORI120658180 .value_changed TO T120661744 .rotation

The AnimationStream node reads from an external source the selected FAP �le. The Transform

node inserted before the Face node, controls the position of the animated face in the scene. The

Face node inserts the animated face and connects it with the FAP �le de�ned earlier. The following

group creates the \logo" which is located on the upper left corner and more speci�cally, the textured

rotating box. First the position of the box (Transform node) and then the image to be applied as

texture (appearance and texture �elds) is de�ned. Finally the geometry and the dimensions of the

object are de�ned (geometry node). In our case the object is a box. The �nal part contains the

necessary nodes for creating the rotating motion. First, the period of the motion is de�ned (how fast

the box will be rotated) and whether the rotation speed will be constant. This is controlled by the

TimeSensor node and the loop and cycleInterval �elds. The OrientationInterpolator node de�nes the

intermediate positions of the motion. Finally, the ROUTE nodes connect the de�ned parameters of

24

Fig. 15. Rough boundary around the foreground object.

Fig. 16. Snapshot of the tracking procedure.

the movement to the textured object. The objects are uniquely characterized by the DEF nodes. For

example, the texture box is object T120661744.

As can be seen from the above, the text based description format for MPEG-4 is very complicated.

It is almost impossible to develop an MPEG-4 scene from scratch using only text. The user should

be aware of a complicated syntax and a great number of MPEG-4 BIFS node names and at the same

time keep track of all object names de�ned. The presented authoring tool allows non-expert MPEG-4

users to create complicated scenes by converting this text-based description to a more native, graphical

description.

25

Fig. 17. The result of the arbitrarily shaped video objects creation textured on two boxes as shown in the Authoring
Tool.

VII. Conclusions

In this paper an authoring tool for the MPEG-4 multimedia standard integrated with image sequence

analysis algorithms was presented. The tool maps BIFS features and functionalities to common Win-

dow controls allowing users to eÆciently create or edit and �nally play MPEG-4 compliant scenes using

an external MPEG-4 player. The authoring tool is integrated with a shot detection algorithm along

with a semi-automatic method for moving object segmentation and tracking. The user can perform

these image sequence analysis procedures in order to create arbitrarily shaped video objects and insert

them into the scene. Experimental results demonstrated that it is possible to create complex scenes

using unique MPEG-4 features such as object-based coding, Updates and Facial Animation. The im-

age sequence analysis algorithms were integrated as separate modules. This shows the exibility of

the architecture of the presented authoring tool to eÆciently combine di�erent modules and integrate

the results in the same MPEG-4 compatible scene.

The presented parts of the corresponding Text Description Files show that it is almost impossible

for the non-expert to build even simple MPEG-4 scenes from scratch using only text. We found

that while content developers were satis�ed with the eÆciency and the e�ectiveness of the system,

26

Fig. 18. The result of the shot detection and segmentation procedures as shown in the player.

those that were not familiar with the MPEG-4 standard had problems understanding the terminology

used. Thus, further development and re�nement is needed before the tool can be useful for large-scale

deployment.

Another important feature of the authoring tool is that it produces scenes which are totally MPEG-4

compliant. These scenes can be visualized using the IM1-3D player developed by the MPEG-4 group

without any modi�cations. Thus, the tool may be used to create MPEG-4 compliant applications

without introducing proprietary features.

The presented paper, also, highlights and exempli�es the manner in which non-expert MPEG-4

users may create and manipulate MPEG-4 content. Speci�cally, the tool developed is intended to help

MPEG-4 algorithm and system developers integrate their algorithms and make them available through

a user friendly interface. It may also help as a beginning for the development of new tools. Finally

the tool may serve as a benchmark for the comparison of other, proprietary or not, authoring tools to

27

Available Video
Formats (YUV, Y (gray

scale), CIF, QCIF)

Arbitrarily shaped
video object

Masks Creation

name00.seg

Is YUV?

No

Y to YUV
Conversion

Shots
Detection

......

name.yuv

Yes

Tracker
Tracker

Tracker

name01.seg

Masks Creation

Masks Creation

name0.yuv

name1.yuv

nameN.yuv

nameN0.seg

nameN1.seg

name10.seg

name11.seg

Mask(s)
Selection

Microsoft's
MPEG-4

Video Encoder

Reconstruction

H.263
Encoder

Video Selection
(name.y or name.yuv)

Fig. 19. Segmentation procedure for the creation of h.263 video format.

one with the capabilities of the MPEG-4 system.

28

References

[1] \Tutorial issue," Signal Processing:Image Communication, Tutorial issue on MPEG-4, vol. 15, no. 4-5, 2000.
[2] R. Koenen, \MPEG-4 Multimedia for our Time," IEEE Spectrum, vol. 36, pp. 26{33, Feb. 1999.
[3] L. Chiariglione, \MPEG and Multimedia Communications," IEEE Trans. on Circuits and Systems for Video Technology,

vol. 7, pp. 5{18, Feb. 1997.
[4] F. Pereira, \MPEG-4:Why, what, how and when?," Signal Processing:Image Communication, vol. 15, pp. 271{279, 2000.
[5] S. Boughoufalah, J. C. Dufourd, and F. Bouilhaguet, \MPEG-Pro, an Authoring System for MPEG-4," in ISCAS 2000-IEEE

International Symposium on Circuits and Systems, (Geneva, Switzerland), May 2000.
[6] V. K. Papastathis, I. Kompatsiaris, and M. G. Strintzis, \Authoring tool for the composition of MPEG-4 audiovisual scenes,"

in International Workshop on Synthetic Natural Hybrid Coding and 3D Imaging, (Santorini, Greece), September 1999.
[7] H. Luo and A. Eleftheriadis, \Designing an interactive tool for video object segmentationa and annotation," in ACM

Multimedia-99, March 1999.
[8] P. Correia and F. Pereira, \The role of analysis in content-based video coding and interaction," Special Issue on Video

Sequence Segmentation for Content-Based Processing and Manipulation, Signal Processing Journal, vol. 26, no. 2, 1998.
[9] B. Erol and F. Kossentini, \Automatic key video object plane selection using the shape information in the MPEG-4 com-

pressed domain," IEEE Trans. on Multimedia, vol. 2, pp. 129{138, June 2000.
[10] B. Erol, S. Shirani, and F. Kossentini, \A concealment method for shape information in MPEG-4 coded video sequences,"

IEEE Trans. on Multimedia, vol. 2, no. 3, pp. 185{190, 2000.
[11] IBM Hotmedia Website, \http://www-4.ibm.com/software/net.media/," 2000.
[12] Veon Website, \http://www.veon.com," 2000.
[13] iVAST Website, \http://www.ivast.com," 2000.
[14] Envivio Website, \http://www.envivio.com," 2000.
[15] P. Daras, I. Kompatsiaris, T. Raptis, and M. G. Strintzis, \MPEG-4 Authoring Tool for the Composition of 3D Audiovisual

Scenes," in ISCAS 2001-IEEE International Symposium on Circuits and Systems, (Sydney, Australia), May 2001.
[16] P. Daras, I. Kompatsiaris, T. Raptis, and M. G. Strintzis, \Authoring Tool for the Composition of 3D Audiovisual Scenes

using the MPEG-4 Standard," in DCV'01-Digital and Computational Video, (Tampa, Florida, U.S.A.), Feb 2001.
[17] Y. Avrithis, A. Doulamis, N. Doulamis, and S. Kollias, \A Stochastic Framework for Optimal Key Frame Extraction from

MPEG Video Databases," Comp. Vision and Image Understanding, vol. 75, pp. 3{24, Jul. 1999.
[18] B.-L. Yeo and B. Liu, \Rapid Scene Analysis on Compressed Video," IEEE Trans. on Circuits and Systems for Video

Technology, vol. 5, pp. 533{544, Dec. 1995.
[19] G. Tziritas and C. Labit, \Motion Analysis and Image Sequence Coding," Elsevier, 1994.
[20] A. Mitiche and P. Bouthemy, \Computation and analysis of image motion: a synopsis of current problems and methods,"

Intern. Journal on Computer Vision, vol. 19, pp. 29{55, Jul 1996.
[21] C. K. Cheong and K. Aizawa, \Structural motion segmentation based on probabilistic clustering," in IEEE Int. Conf. on

Image Processing, vol. I, pp. 505{508, 1996.
[22] F. Moscheni, S. Bhattacharjee, and M. Kunt, \Spatiotemporal segmentation based on region merging," IEEE Trans. on

Pattern Analysis and Machine Intelligence, vol. PAMI-20, pp. 897{915, Sep. 1998.
[23] G. Adiv, \Determining three-dimensional motion and structure from optical ow generated by several moving objects," IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-7, pp. 384{401, Jul. 1985.
[24] J. M. Odobez and P. Bouthemy, \Direct incremental model-based image motion segmentation for video analysis," Signal

Processing, vol. 66, pp. 143{155, 1998.
[25] J. Wang and E. Adelson, \Representing moving images with layers," IEEE Trans. on Image Processing, vol. IP-3, no. 5,

pp. 625{638, 1994.
[26] I. Grinias and G. Tziritas, \A semi-automatic seeded region growing algorithm for video object localization and tracking,"

Signal Processing : Image Communication, vol. 16, pp. 977{986, Aug 2001.
[27] R. Adams and L. Bischof, \Seeded Region Growing," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 16,

pp. 641{647, Jun. 1994.
[28] R. Koenen, \MPEG-4 Overview - (V.16 La BauleVersion)," ISO/IEC JTC1/SC29/WG11 N3747, October 2000.
[29] G. Akrivas, N. Doulamis, A. Doulamis, and S. Kollias, \Scene Detection Methods for MPEG- encoded Video Signals," in

Proceedings of the MELECON 2000 Mediterranean Electrotechnical Conference, (Nicosia, Cyprus), May 2000.
[30] Z. Lifshitz, \Status of the Systems Version 1, 2, 3 Software Implementation," tech. rep., ISO/IEC JTC1/SC29/WG11 N3564,

July 2000.
[31] J. Sign�es, Y. Fisher, and A. Eleftheriadis, \MPEG-4's Binary Format for Scene Description," Signal Processing:Image Com-

munication, Special issue on MPEG-4, vol. 15, no. 4-5, pp. 321{345, 2000.
[32] ISO/IEC 14472-1, \The Virtual Reality Modeling Language," http://www.vrml.org/Speci�cations/VRML97, 1997.
[33] B. MacIntyre and S. Feiner, \Future multimedia user interfaces," Multimedia Systems, vol. 4, no. 5, pp. 250{268, 1996.
[34] University of Genova. Digital Signal Processing Laboratory, \http://www-dsp.com.dist.unige.it/ snhc/fba ce/facefrmt.htm,"

2000.
[35] S. A. J. Winder, \MPEG-4 Video Reference Software," tech. rep., ISO/IEC 14496 (MPEG-4) Video Reference Software, Jul.

2001.

29

Textured 3D Box
with Interpolator

3D Text

Arbitrarily shaped
video object Video

Textured
3D Box

Scene Tree

Fig. 20. The virtual studio scene using arbitrarily shaped video objects in the authoring tool.

Fig. 21. The virtual studio scene in the IM1 3D player.

30

Textured 3D Box
with Interpolator

Sound

3D Text

Textured
3D Box

Animated
Face

IndecedFaceSet

Video

Textured
3D Box

Scene Tree

Fig. 22. The virtual studio scene in the authoring tool.

Fig. 23. The virtual studio scene in the IM1 3D player.

